

Phospho-PepArray™ based Identification of Novel **Protein Interaction Networks in Tyrosine Kinase** Signaling Pathways

Srinivasan Krishnamoorthy¹, Ailing Hong³, Zhonghua Liu¹, Ruijuan Zhu², Xin Wang, Yulu Zhang¹, Qi Zhu⁴, Xiaochuan Zhou^{1,4}, Tongbin Li², Xiaolian Gao³

¹Dept. of Biology&Biochemistry, University of Houston; Houston, TX 77004; ²Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455; ³Atactic Technologies Inc. Houston, TX77054; ⁴LC Sciences, Houston, TX 77054

Introduction

Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and

Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer.

With the available phosphorylation data on various High throughput proteomic technology platforms, it is becoming increasingly evident that many proteins are interlinked with each other in multiple signaling pathways through multiple protein phosphorylation sites (pT, pS and pY). Hence it is becoming extremely hard to target a specific protein as a biomarker or for a drug.

Post –translational modifications (eg., pY) on proteins create multiple sub-

SH2 proteins #/		MW	Function	Mot	6f*	Known Cor sequer	Known Consensus sequence ⁶			
ZAP-70	619	70KD	Kinase	- SH2 - SH2 - YK	Onase	[pY][DNSQE][E	EGAV][L]	AntiZAP-70-Alexa 488	0.03-3	
Grb2	217	25KD	Adaptor	- <mark>5H3</mark> - 5H2		[by] [iv@y][v][ILVYQF]	AntiGST-Hylite 647 or AntiGST-Bibtin+ Streptavidin-Alexa 594	0.01-1	
втк	659	76KD	Kinase	PH - 5H3 - 5H2	Y Kinase	[pY][DE][E][VT	E]	AntiHis-Hylite 647	2-20 µ	
Src	536	60KD	Kinase			(PY](EDT][ENY	IIML]	AntiHis-Hylite 555	0.04-0	
Cell lines	i	Descrip	otion		Туре	Protein for binding	Ąb ar	nd dyes		
HUVEC Hum		Human	Umbilical Ve	ein Endothelial Cells	Normal	Grb2	Antio	647 conj		
T47D Human ductal breast		t epithelial tumor cell line	Grb2	iGrb2+Antirabit-Alexa 647 conju						

a motify of the SU2 proteins were from the wolksity little //sk2 wolkings, edu/	
he consensus data ware from "Liu et al. (2008) Mol Cell 22, 251-288"	
e K values of the SH2 proteins were from the literatures listed in the Table	
200	

PepArray pro – a user-driven PepArray design program										
			Model co	onstructio	n					
	Array Desiging Start									
	V	C1		Going to Sy	ynthes					
	SEED Peptides									
	Designing	ſ		3 Login a	and					
	from Screen or File		N	Resul	; ts					
	from Protein titling									

SH2 domain	PPEP_Seq	PPEP_Pro	Pho_site	Description
	yenvpa	LAX1	294	lymphocyte transmembrane adaptor 1
C-+2	yinani	PTPN11	304	protein tyrosine phosphatase, non-receptor type 11
	yQNLTR	SPTAN1	2430	spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)
GIDZ	yQNSAS	LAT2	193	linker for activation of T cells family, member 2
	yQNVLT	DST	633	dystonin
	y∨NIQN	SHC1	313	SHC (Src homology 2 domain containing) transforming protein 1
	yeymnr	ERBB3	1260	v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)
	yfyvdp	PDGFRA	572	platelet-derived growth factor receptor, alpha polypeptide
	yLYLVV	EPOR	454	erythropoietin receptor
ВТК	yRFLYH	PTPN18	281	protein tyrosine phosphatase, non-receptor type 18 (brain-derived)
	yTDPSY	WASF3	151	WAS protein family, member 3
	yTFLMG	SSTR1	226	somatostatin receptor 1
	yVFFPS	IFNAR1	466	interferon (alpha, beta and omega) receptor 1
	ysyqdi	CBL	868	Cas-Br-M (murine) ecotropic retroviral transforming sequence
	yEEMYP	CCNB1	257	cyclin B1
	yEYMDV	ERBB3	1221	v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)
C.c.o	yVIVEY	FGFR2	555	fibroblast growth factor receptor 2
Src	VIVI PI	KUD	1174	kinase insert domain recentor (a type III recentor tyrosine kinase)

Grb2 mediated pY proteome networks in **HUVEC and T47D cells**

Array analysis of Tyrosine phospho-proteome in T47D cells PEP Array analysis of Tyrosine phospho-proteome in HUVEC cells

groups of the same proteins which are pathway specific. Hence a sensible strategy is to target these phosphorylated sites that are pathway specific.

Here we present our microchip based (PepArrayTM) peptide microarray technology to characterize and identify novel protein interactions from cancer signaling pathways.

The interaction between phosphopeptides (PPEPs) and phosphoprotein binding domain containing proteins (PPBDs) on a microchip reveal novel protein cascades representing various signaling pathways through target binding.

More than 10 families of PPBDs (SH2, PTB, WW, 14-3- etc) represent a vast majority of proteins in a signaling cascade. Proteins with phosphotyrosine modifications not only bind to proteins with SH2 domains but also activate downstream proteins (Kinases and phosphatases) to initiate a signaling cascade.

We illustrate Phosphotyrosine (pY) peptide interactions with an SH2 domain containing protein, GRB2 to identify protein complexes under various signaling cascades. We have used Breast cancer cells (T47D) and Human Umbilical vein cells (HUVEC) to demonstrate the differential signaling cascade mediated by differential protein-protein interaction networks.

Further focus will be on technology advancement through integration of high density peptide microarray with computational web tools to rapidly identify novel protein interaction networks in various cancers and neurodegenerative diseases and increase the sensitivity of detecting protein interactions.

μParaflo[®] Biochip Technology

Thousands of different peptides can be synthesized in situ on 1 cm² microfluidic chip using standard t-Boc protecting amino acids and a photogenerated acid as deprotection reagent for the light-gated parallel synthesis (1,2).

Labadia et al. J. Leukocyte Biol. (1996) 59, 740-746. Isakov et al, J. Exp. Med. (1995) 181, 375-380 et al. Proc. Natl. Acad. Sci. USA (2002) 99, 8524-8529 zeng et al. (2000) Protein Science 9: 2377-2385 ibbins et al. (1993) Mol. Cell Biol. 13, 7278-7287 adbury et al. (1995) Proc. Natl. Acad. Sci. USA, 92, 3199-3203. Huang et al. (2008) Mol Cell Proteomics. 7, 768-784

SH2-PPEP Microarray Design and Analysis

A SH2 domain interacting Statistics of SH2 proteins phosphopeptide (SH2-PPEP) and PPEPs in the microarray was designed. microarray • The PPEPs were from PepCyber

Index ~PPEP (<u>www.pepcyber.org</u>). SH2 proteins • The PPEPs in the microarray PPEPs are known substrates of SH2 PPEP proteins domains Interactions Statistics of SH2-PPEP Unique PPEPs interactions

Function	# of SH2 proteins	SH2 protein	# of ACC	ŧ of PPEPs	# of PPEP protein	# of Uniqe PPEP	# of Unique_ PPEP proteins	Function	# of SH2 proteins	SH2 protein	# of ACC	# of PPEPs	# of PPEP protein	# of Uniqe PPEP	# of Unique_ PPEP proteins
		ABL1	NP_005148	59	21	8	4			APS	NP_066189	6	3		
		ABL2	NP_005149	29	5					CISH	NP_659508	27	7		
		BLK	NP_001706	11	6					DAPP1	NP_055210	3	2		
		BMX	NP_975010	2	4					GRB10	NP_005302	24	7	7	/ 1
		BTK	NP_000052	1	1					GRB14	NP_004481	6	3	1	
		CSK	NP_004374	16	13	4	2			GRB7	NP_005301	21	11	1	1
		FER	NP_005237	3	2	2	: 1			HSH2D	NP_116244	3	2		
		FES	NP_001996	27	23	13	7			SH2B1	NP_056318	6	4	- 3	3 1
		FGR	NP_005239	31	20			Signal		SH2B3	NP_005466	4	3		
		FRK	NP_002022	1	1			regulation	19	SH2D1A	NP_002342	16	8	2	2
		FYN	NP_002028	71	49	11	5	regulation		SH2D1B	NP_444512	12	5		
		HCK	NP_002101	6	; 4					SH2D2A	NP_003966	2	2		
		πк	NP_005537	9	4					SH3BP2	NP_003014	17	14	6	6 2
Kinase	27	JAK1	NP_002218	4	3					SHB	NP_003019	4	3		
		JAK2	NP_004963	7	4					SOCS1	NP_003736	9	5	1	
		JAK3	NP_000206	3	2					SOCS2	NP_003868	12	6		
		LCK	NP_005347	59	36	13				SOCS3	NP_003946	15	10	1	
		LYN	NP_002341	21	14	4	1			SOCS4	NP_543143	2	2		
		MATK	NP_002369	10	8					SOCS5	NP_054730	2	2		
		PTK6	NP_005966	3	2	3	1			BLNK	NP_037446	2	2	1	
		SRC	NP_005408	82	51	17	7			LCP2	NP_005556	3	1	3	}
		SYK	NP_003168	73	25	5	1	Scaffold	5	MIST	NP_443196	16	4		
		TEC	NP_003206	6	2	3				SHC1	NP_892113	113	54	36	; 4
		TXK	NP_003319	2	4					SHC3	NP 058544	7	3		
		TYK2	NP 003322	2	1					STAT1	NP 009330	6	18	1	3
		YES1	NP 005424	8	6					STAT2	NP 005410	5	4		
		ZAP70	NP 001070	28	12	: 1				STAT3	NP 644805	36	16	15	; 2
.		PTPN11	NP 002825	220	109	58	14	Transcription	7	STAT4	NP 003142	4	4	1	
Phophatases	2	PTPN6	NP 002822	206	97	93	40			STAT5A	NP 003143	17	7	1	
		CBL	NP 005179	5	4	4	3			STAT5B	NP 036580	17	8		
Ubiquitination	2	CBLB	NP 733762	2	2					STAT6	NP 003144	7	4	2	2
		CRK	NP 058431	75	21	19	1			BCAR3	NP 003558	6	2		
		CRKL	NP 005198	99	27	15	2			CHN1	NP 001813	4	3		

Unique PPEP protein:

CHN2 NP_004058

You have Guest access to PepArray pro Register

ome | Array Design | PepCyber | P~PEP | miRecords |

You are here: Define SEED peptides - choose SEED peptides

from Depcyber

				alact th	a SEED n	entides				
Array	/ Layout Info	rmation		elect th	e SEED p	eptides				
Total sites	Row*Columr	QC	ſ	Displaying 1 - 20 in 1198 records, show 20						
3968	128*31	230		Next>>	Index	ID	Sequence			
SEED	Derived	Control		Delect	1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	- EGER 1172				
Peptides	Peptides	Peptides		V	1	S_EGFK_1172	X10FDMED3XXD11EKF			
0 Tabal	0	0		1	2	s_EGFR_1197	GSTAENAEyLRVAPQSS			
Peptides	sites	Panel		1	3	s_CD19_409	PEEEGEGyEEPDSEED			
0	3738	panel 1		1	4	s_CD19_439	QLSQDGSGyENPEDEPL			
				1	5	s_CD72_39	ADDDGEIT _Y ENVQVPAV			
	Docian Ch		1	6	s_CSF1R_923	QEDRRERDYTNLPSSSR				
Array	Configuration		1	7	s_JUNB_182	AGPEPPPVyTNLSSYSP				
,		1	8	s_PRKCB1_662	QNEFAGFSyTNPEFVIN					
Compo		1	9	s_Myd88_276	LRFITICDyTNPCTKSW					
SEED P	eptides			1	10	s_BCAR1_115	YQPQPDSVylvptpska			
Deriver	d Deptides			1	11	s_BCAR1_179	PGGPAQDIyQVPPSAGM			
Derived	u replides			1	12	s_BCAR1_192	SAGMGHDIyQVPPSMDT			
Contro Peptide	l/Reference es			1	13	s_BCAR1_249	LAPGPQDIyDVPPVRGL			
				1	14	s_BCAR1_267	PSQYGQEVyDTPPMAVK			
Design	Panel			1	15	s_BCAR1_287	GRDPLLEVyDVPPSVEK			
Set rep	licate for pe	ptides		1	16	s_BCAR1_306	PPSNHHAVydvppsvsk			
View/C	onstruct a Pa	anel		1	17	s_BCAR1_362	DSPPAEDVyDVPPPAPD			
				1	18	s_BCAR1_410	GGVVD3GV _V AVPPPAER			
Output	t Layout File			1	19	s_DOK1_296	LLDSPPALyAEPLDSLR			
Select	Panels for Sy	nthesis		1	20	s_DOK1_315	PCPSQDSLySDPLDSTS			
PepArra	ay Layout			Select All Inverse Deselect All Next						

Restart a New Pane Restart a New Array

Contact PepCyber.org | © PepCyber.org 2007-2010

Link:

http://www.pepcyber.org/PepArray/

	YAEID	PIK2	418	PTK2 protein tyrosine kinase 2
	yLIYVF	STAT5B	664	signal transducer and activator of transcription 5B
970	yASLNF	CD33	340	CD33 molecule
	ySHLGG CD3D		160	CD3d molecule, delta (CD3-TCR complex)
	ySLLMH	FCGR2B	292	Fc fragment of IgG, low affinity Ilb, receptor (CD32)
	ySALTC	IL4R	713	interleukin 4 receptor
	ytalqr	NFAM1	220	NFAT activating protein with ITAM motif 1
	yQFLYD	PTPRC	1216	protein tyrosine phosphatase, receptor type, C

719 platelet-derived growth factor receptor, alpha polypepti

The signature peptides/panels were identified by two steps:

- (1) Based on *in silico* analysis, unique PPEPs of a SH2 protein or a unique PPEPs combination (panel) were screened.
- (2) Based on binding assays, the unique peptides/panel of a SH2 protein need to show high affinity binding and without overlapping among the four SH2 proteins.

Grb2 in Cell lysate binding assay

Grb2 in HUVEC cell lysate binding to SH2-PPEP microarray.

A. Grb2 binding profile. 100 ug/mL (0.5 mL) cell lysate was used. The binding was detected by antiGrb2 and antirabit secondary antibody conjugated with Alexa 647.

- B. Binding intensity distribution.
- C. Binding spot CV distribution.
- D. Close-up image of the small region boxed in panel A.

Summary

A strategy has been outlined for identifying signature peptide probes that could serve as signaling pathway specific markers to distingush normal and diseased protein samples (e.g., Identification of cancer types and subtypes).

By combining *in silico* analysis (PepArray pro) and binding experiments, we screened signature peptides/panels for Grb2, BTK, Src and ZAP70. With signature peptides of Grb2, we could detect Grb2 in cell lysates with sensitivity of low nM level.

We demonstrate a method to investigate SH2 protein interactions and related pathways in cells. From *in silico* analysis and recombinant protein binding assay to cell lysate binding assay, we found differential binding patterns of GRB2 protein in cell lysates (direct &indirect binding), which lead us to identify Grb2 mediated SH2 protein networks and related pathways typical to HUVEC and T47D cells.

The future direction is to develop this technology for Biomarker screening in patient sample, focusing on

Digital photolithography

Methods and Tools

µParaFlo[™] microfluidic

array chip to produce

thousands peptides

LC Sciences 🎸

Detection of PPEP mediated protein Binding

Recombinant SH2 protein and cell lysate binding assays

	GRAP2	NP_004801	9	6					RASA1	NP_002881	55	18	7	
Adaptor	9 GRB2	NP_002077	166	86	89	30	Cranell CTDana		RIN1	NP_004283	4	2		
	NCK1	NP_006144	53	22	6	2	aignaling	11	RIN2	NP_061866	7	3		
	NCK2	NP_003572	24	11	4	1	signaling		SH2D3A	NP_005481	4	3		
	SLA	NP_006739	16	5					SH2D3C	NP_005480	1	1		
	SLA2	NP_115590	7	3					VAV1	NP_005419	40	22	11	
	INPP5D	NP_005532	34	17					VAV2	NP_003362	14	6		
	INPPL1	NP_001558	2	2	1				VAV3	NP_006104	9	4		
	PIK3R1	NP_852664	166	76	83	17	7 1 Charactia		TENC1	NP_056134	9	3		
Phospholipid	7 PIK3R2	NP_005018	30	14	1	1		4	TNS1	NP_072174	1	1		
	PIK3R3	NP_003620	21	5			Chromaun		TNS3	NP_073585	4	2		
	PLCG1	NP_002651	105	42	12	2			TNS4	NP_116254	2	2		
	PLCG2	NP_002652	33	14	2	1								
	-												-	

PPEP: phosphopeitde

GRAP NP_006604

PPEP protein: proteins containing PPEP Unique PPEP: PPEP that uniquely binds to a SH2 domain Unique PPEP protein: PPEP protein that uniquely binds to a SH2 domain

The SH2 domain proteins can be classified into 10 groups based on their functions.

Reference: Liu, B.A, Jablonowski, K., Raina, M., Arcé, M., Pawson, T., Nash, P.D. (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell. 22, 851-868.

SH2 Protein Network and Cell Surface **Receptor Pathways**

- A. Binding profiles of 4 SH2 proteins on the same region of SH2-PPEP microarray.
- B. Heatmap of binding intensities of 4 SH2 proteins to related PPEPs. The binding signals were normalized into

E. Grb2 titration in the HUVEC cell lysate. The titration curves for 6 signature PPEPs were plotted. It was shown that 0.5 nM Grb2 can be probed.

F. The Kd values were calculated for 6 signature peptides of Grb2.

Major points:

- The cell lystate binding to SH2-PPEP microarray was uniform and
- The signature peptides of Grb2 might be used for detecting the Grb2 in cell lysates with sensitivity of low nM level.

Direct and Indirect Grb2 mediated binding of PPEPs

- A. Venn diagram for three datasets of rGrb2 (recombinant Grb2), Grb2 in HUVEC and in T47D.
- B. Endogenous Grb2 in cell lysate can bind to PPEPs in two patterns: direct binding and indirect binding.
- C. Grb2 in cell lysates can bind to the same PPEPs as rGrb2 does,

personalized medicine to help physicians to diagnose, stratify and select treatment options for diseases.

Acknowledgements

This research is supported by grants from NIH/NCI, the Clinical Proteomics Technology for Cancer (R33 CA126209). We thank Dr. Xiaolin Zhang (Atactic Technologies) for synthesis instrument support, Dr. John McMurray and Dr. Li Ma both at M. D. Anderson Cancer Center, U. of Texas for many valuable

<u>discussions</u>

References

- Gao, X., Pellois, J. P., Na, Y., Kim, Y., Gulari, E., Zhou, X. (2004) High density peptide microarrays. In situ synthesis and applications. Mol Divers 8, 177-87.
- Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., Gao, X. (2002 Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20, 922-6.
- 3. Feng, J., Wong, K.-Y., Lynch, G. C., Gao, X., and Pettitt, M. (2009) Salt effects on surfacetethered peptides in solution. J. Phys. Chem. 113, 9472-9478 [19548651].
- Xia, Y., Yamaoka, Y., Zhu, Q., Matha, I., Gao, X. (2009) A Comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. Plos Biology, 4, e7736.
- Li, M., Xia, Y., Gu, Y., Zhang, K., Lang, Q., Chen, L., Guan, J., Wang, J., Zhu, Q., Zhou, X., Gao*, X., and Li, X. [* Corresponding author] (2010) MicroRNAome of porcine pre- and postnatal development. 5, e11541
- Chen, G., Zuo, Z., Zhu, Q., Hong, A., Zhou, X. Gao, X., and Li, T. (2009) Qualitative and quantitative analysis of peptide microarray binding experiments using SVM-PEPARRAY. Invited review in "Peptide Microarrays" in Methods and Protocols. 570, 403-411. Ed. Cretich,
- 7. Li, T., Zuo, Z., Zhu, Q., Hong, A., Zhou, X., Gao, X. (2009) Web-based design of peptide microarrays using mPepArray Pro. Invited review in "Peptide Microarrays" in Methods and Protocols. 570, 391-402. Ed. Cretich, M.
- 8. Chen, G., Zuo, Z., Zhu, Q., Hong, A., Zhou, X. Gao, X., and Li, T. (2009) "Qualitative and quantitative analysis of peptide microarray binding experiments using SVM-PEPARRAY". Invited review in Peptide Microarrays. in Methods and Protocols. 570, 403-411. Ed. Cretich, M.
- Gong, W., Zhou, D., Ren, Y., Wang, Y., Zuo, Z., Shen, Y., Xiao, F., Zhu, Q., Hong, A., Zhou, Z. Gao, X., and Li, T. (2008) PepCyber: P~PEP : A database of human protein-protein interactions mediated by phosphoprotein binding domains. Nucleic Acids Res. 36, D679-D683
- 10. Wan, J., Kang, S., Tang, C., Yan, J., Ren, Y., Liu, J., Gao, X., Banerjee, A., Ellis, L. B. M., and Li, T. (2008) Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic Acids Res. 36, e22.
- 11. Zhu, Q., Hong, A., Sheng, N., Zhang, X., Jun, K.-Y., Srivannavit, O., Gulari, E., Gao, X., and Zhou, X. (2007) "Microfluidic biochip for nucleic acid and protein analysis" in Methods Mol. Biol. 382, 287-312, Microarrays. Vol. I. Ed. Rampal, J. B.
- 12. Liu J, Kang S, Tang C, Ellis LB, Li T (2007): Meta-prediction of protein subcellular localization with reduced voting. Nucleic Acids Res, 35:e96
- 13. Feng, J., Wong, K.-Y., Lynch, G. C., Gao, X., and Pettitt, B. M. (2007) Peptide conformations

Z values. The PPEPs with Z values ranked from 1.0-3.0 were selected to plot the heat map.

C. Consensus sequences of binding sequences of 4 SH2 proteins. The consensus sequences were generated by using Weblogo (http://weblogo.berkeley.edu/logo.cgi)

Results:

- By using four recombinant SH2 proteins, specific and distinct binding profiles were obtained.
- The consensus sequences are consistent with those
- reported in literatures.
- Recombinant binding assays can be used as "reference" to calibrate the cell lysate binding.

indicating that Grb2 itself directly binds to these PPEPs—direct binding

D. Grb2 in cell lysates can bind to the PPEPs that rGrb2 can not, indicating that Grb2 indirectly binds to these PPEPs via other SH2 domain proteins in the Grb2 complex—indirect binding

Results:

 Differential binding patterns were observed in T47D and HUVEC cell binding assays.

• HUVEC and T47D have different binding profile, which can be used for identifying different binders of Grb2 in two cell lines.

of a microarray surface-tethered epitope of the tumor suppressor p53. J. Physical Chem. 111, 13797-13806

14. Wan J, Liu W, Xu Q, Ren Y, Flower DR, Li T (2006) SVRMHC prediction server for MHCbinding peptides. BMC Bioinformatics, 7, 463.

15. Liu, W., Meng, X., Xu, Q., Flower, D. R., Li, T. (2006) Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics 7, 182.

Contact Information

Xiaolian Gao, University of Houston, Houston, TX; xqao@uh.edu; Xiaochuan Zhou, LC Sciences, Houston, TX; xzhou@lcscienes.com; Srini Krishnamoorthy, University of Houston, Houston, TX; ksriniva@central.uh.edu; Tongbin Li, University of Minnesota, Minneapolis, MN; toli@biocompute.umn.edu;